Supertransvectants and symplectic geometry

نویسنده

  • H. Gargoubi
چکیده

The 1|1-supertransvectants are the osp(1|2)-invariant bilinear operations on weighted densities on the supercircle S, the projective version of R. These operations are analogues of the famous Gordan transvectants (or Rankin-Cohen brackets). We prove that supertransvectants coincide with the iterated Poisson and ghost Poisson brackets on R and apply this result to construct star-products.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation

In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...

متن کامل

Math 242 -symplectic Geometry Lecture Notes

Alan Weinstein office 825 Evans 642-3518 [email protected] OH: T 9:40-11, R 12:40-2 math.berkeley.edu/~alanw bspace.berkeley.edu GSI(sorta):Christian Bloman? orbit method in representation theory. symplectic geometry and algebraic geometry. moment maps. Attiya. 90s. conformal field theory. Syberg-Witten theory. Poisson bracket ... lie algebra structure. Leads to Poisson geometry. Mechanic...

متن کامل

From Hamiltonian Systems to Poisson Geometry

We introduce Hamiltonian systems and derive an important stability result, along with giving some physical motivation. We then move onto the generalization of these systems found in symplectic geometry. Next we consider symplectic geometry’s natural generalization, Poisson geometry. After giving some definitions we present the motivating example of the torqueless Euler equations. These motivate...

متن کامل

The Geometry of Symplectic Pairs

We study the geometry of manifolds carrying symplectic pairs consisting of two closed 2-forms of constant ranks, whose kernel foliations are complementary. Using a variation of the construction of Boothby and Wang we build contact-symplectic and contact pairs from symplectic pairs.

متن کامل

A Glimpse into Symplectic Geometry

Over the past 15 years symplectic geometry has developed its own identity, and can now stand alongside traditional Riemannian geometry as a rich and meaningful part of mathematics. The basic definitions are very natural from a mathematical point of view: one studies the geometry of a skew-symmetric bilinear form ω rather than a symmetric one. However, this seemingly innocent change of symmetry ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008